Publications#
2025#
Machine Learning-Optimized Stochastic Voronoi Lattice Structures for Enhanced Mechanical Performance. Thompson, Michael; Sarvestani, Hamidreza Yazdani; Sohrabi-Kashani, Ahmed; Kiyani, Elham; Filippi, Enzo; van Egmond, Derek Aranguren; Rahmat, Meysam; Ashrafi, Behnam; Karttunen, Mikko.
submittedd
2024#
Structure and ph-dependence of membranolytic mechanisms by truncated oxidized phospholipids. M. Xie, M. Derks, E. Koch, B. Boven, M. Janlad, B. Bagheri, Xu Zexi, C. van Walree, A. Sobota, A. Sonnen, M. Weingarth, Wong-ekkabut Jirasak; Mikko Karttunen, E. Breukink, J. A. Killian, and J. Lorent.
submitted (2024).Atomic layer restructuring of gold surfaces by N-heterocyclic carbenes over large surface area. Goodwin, Eden; Davies, Matthew; Bakiro, Maram; Desroche, Emmett; Tumino, Francesco; Aloisio, Mark; Crudden, Cathleen M.; Ragogna, Paul J.; Karttunen, Mikko; Barry, Seán T.
submitted (2024).
Preprint: https://doi.org/10.26434/chemrxiv-2024-fsb28Jamming Crossovers in a Confined Driven Polymer in Solution. Changizrezaei, Setareh; Karttunen, Mikko; Denniston, Colin.
Accepted for publication in Soft Matter (2024).
Online: https://doi.org/10.1039/D4SM00761A
Preprint: http://arxiv.org/abs/2406.14741Dispersion of hydrophilic nanoparticles in natural rubber with phospholipids. Kitjanon, Jiramate; Nisoh, Nililla; Phongphanphanee, Saree; Chattham, Nattaporn; Karttunen, Mikko; Wong-ekkabut, Jirasak.
Polymers 16, 2901 (2024).
Online (open access): https://doi.org/10.3390/polym16202901Cholesterol inhibits oxygen permeation through biological membranes: mechanism against double-bond peroxidation. Boonnoy, Phansiri; Janlad, Minchakarn; Bagheri, Behnaz; Dias, Cristiano; Karttunen, Mikko; Wong-ekkabut, Jirasak.
RSC Adv. 14, 29113-29129 (2024).
Online: https://doi.org/10.1039/D4RA04846F
Movies: https://zenodo.org/doi/10.5281/zenodo.12570598Learning glass transition temperatures via dimensionality reduction with data from computer simulations: Polymers as the pilot case. Glova, Artem; Karttunen, Mikko.
J. Chem. Phys. 161, 184902 (2024).
Web: https://doi.org/10.1063/5.0229161
Preprint: https://arxiv.org/abs/2406.20018
Data: SoftSimu/glass_transitionNon-Stokesian dynamics of magnetic helical nanoswimmers under confinement. Fazeli, Alireza; Thakore, Vaibhav; Ala-Nissila, Tapio; Karttunen, Mikko.
PNAS Nexus 3, pgae182 (2024).
Web (open access): https://doi.org/10.1093/pnasnexus/pgae182
Preprint: https://doi.org/10.48550/arXiv.2311.00839
Data: https://zenodo.org/doi/10.5281/zenodo.11091026Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs. Kiyani, Elham; Kooshkbaghi, Mahdi; Shukla, Khemraj; Koneru; Rahul, B; Li, Zhen; Bravao, Luis; Ghoshal, Anindya; Karniadakis, George Em; Karttunen, Mikko.
J. Fluid Mech. 985, A7 (2024).
Web: https://doi.org/10.1017/jfm.2024.270
Preprint: https://arxiv.org/abs/2307.09142A Molecular Dynamics Simulation Study of the Effects of βGln114 Mutation on the Dynamic Behavior of the Catalytic Site of the Tryptophan Synthase. Roy, Anupom; Karttunen, Mikko.
J. Chem. Inf. Model. 64, 983-1003 (2024)
Web: https://doi.org/10.1021/acs.jcim.3c01966
Preprint: https://doi.org/10.26434/chemrxiv-2023-4bhpv
Data: https://doi.org/10.5281/zenodo.10339268Chemoselective Staudinger Reactivity of Bis(Azido)Phosphines Supported with a \(\pi\)-Donating Imidazolin-2-Iminato Ligand. Lortie, John L.; Davies, Matthew; Boyle, Paul D.; Karttunen, Mikko; Ragogna, Paul J.
Inorg. Chem. 14, 6335–6345 (2024).
Web: https://doi.org/10.1021/acs.inorgchem.4c00120A Computational Investigation on Eumelanin-Drug Binding in Aqueous Solution. Soltani, Sepideh; Roy, Anupom; Urtti, Arto; Karttunen, Mikko.
Materials Advances 5, 5494-5513 (2024).
Web (open access): https://doi.org/10.1039/D4MA00246F
Preprint: https://doi.org/10.26434/chemrxiv-2023-p16bg
Movies: https://zenodo.org/doi/10.5281/zenodo.8090223Exploring the stereochemistry-specific tendency for interdigitation in synthetic monomycoloyl glycerol analogs through molecular dynamics simulations. Heinonen, Suvi; Koivuniemi, Artturi; Davies, Matt; Karttunen, Mikko; Foged, Camilla; Bunker, Alex. Submitted.
Data: https://zenodo.org/doi/10.5281/zenodo.11090143
2023#
A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data. Kiyani, Elham; Shukla, Khemraj; Karniadakis, George Em; Karttunen, Mikko.
Computer Methods in Applied Mechanics and Engineering 415, 116258 (2023).
Web: https://doi.org/10.1016/j.cma.2023.116258
Preprint: http://arxiv.org/abs/2305.10706Accurately computing protein~\(\textbf{pK}_\textbf{a}\) values using non-equilibrium alchemy. Wilson, Carter J.; Karttunen, Mikko; de Groot, Bert, Gapsys, Vytautas.
J. Chem. Theory Comput. 19, 7833–7845 (2023).
Web: https://doi.org/10.1021/acs.jctc.3c00721 (open access)
Preprint: https://doi.org/10.26434/chemrxiv-2023-pqjrfResolving coupled pH titrations using non-equilibrium free energy calculations. Wilson, Carter J.; de Groot, Bert, Gapsys, Vytautas. submitted (2023).
Preprint: https://doi.org/10.26434/chemrxiv-2023-1c8rnEffect of oxidation on POPC lipid bilayers: Anionic carboxyl group plays a major role. Bagheri, Behnaz; Boonnoy, Phansiri; Wong-ekkabut, Jirasak; Karttunen, Mikko.
PCCP, 25, 18310-18321 (2023) [open access].
Web: https://doi.org/10.1039/D3CP01692G
Movies: https://doi.org/10.5281/zenodo.7810558Effect of substrate heterogeneity and topology on epithelial tissue growth dynamics. Mazarei, Mahmood; Åström, Jan; Westerholm, Jan; Karttunen, Mikko.
Phys. Rev. E 208, 054405 (2023).
Web: https://dx.doi.org/10.1103/PhysRevE.108.054405
Preprint: https://arxiv.org/abs/2303.10850
Movies: https://doi.org/10.5281/zenodo.8112841Designing architectured ceramics for transient thermal applications using finite element and deep learning. Kiyani, Elham; Sarvestani, Hamidreza Yazdani; Ravanbakhsh, Hossein; Behbahani, Razyeh; Ashrafi, Behnam; Rahmat, Meysam; Karttunen, Mikko.
Modelling and Simulation in Materials Science and Engineering 32, 015001 (2023).
Web: https://dx.doi.org/10.1088/1361-651X/ad073a
Preprint: https://doi.org/10.48550/arXiv.2305.11632Reply to ‘On the existence of collective interactions’. Sowlati-Hashjin, Shahin; Šadek, Vojtěch; Sadjadi, Seyedabdolreza; Karttunen, Mikko; Martín-Pendás, Angel; Foroutan-Nejad, Cina.
Nature Comms. 14, 3873 (2003)
Web: https://doi.org/10.1038/s41467-023-39504-3Molecular Dynamics Simulations of the Dissolution of Choline Chloride Nanocrystals in Ethylene Glycol at (and Near) the Deep Eutectic Ratio. Rafael Maglia de Souza, Mikko Karttunen, and Mauro Carlos Costa Ribeiro. submitted
Elucidating Lipid Conformations in the Ripple Phase: Machine Learning Reveals Four Lipid Populations. Davies, Matthew; Reyes-Figueroa, A. D.; Gurtovenko, Andrey A.; Frankel, Daniel; Karttunen, Mikko.
Biophys. J. 122, P442-450 (2023).
Web: https://doi.org/10.1016/j.bpj.2022.11.024.
Movies: https://doi.org/10.5281/zenodo.8103792
Preprint: https://doi.org/10.1101/2021.11.25.470048Investigation of Structure and Properties of Polymerizable Deep Eutectic Solvent Based on Choline Chloride and Acrylic Acid. Tolmachev, Dmitry; Nazarychev, Victor; Fedotova, Veronika; Vorobiov, Vitaly; Lukasheva, Natalia; Smirnov, Michael; Karttunen, Mikko.
J. Mol. Liq. 370, 121030, (2023).
https://doi.org/10.1016/j.molliq.2022.121030.Combining Finite Element and Machine Learning Methods to Predict Structures of Architectured Interlocking Ceramics. Ravanbakhsh, Hossein; Behbahani, Razyeh; Sarvestani, Hamidreza Yazdani; Kiyani, Elham; Rahmat, Meysam; Karttunen, Mikko; Ashrafi, Behnam.
Adv. Eng. Mater. 25, 2201408 (2023).
Web: https://doi.org/10.1002/adem.202201408.Identification of Catechins Binding Pockets in Monomeric Aβ42 Through Ensemble Docking and MD Simulations. Rohoullah Firouzi, Shahin Sowlati-Hashjin, Cecilia Chávez-García, Mitra Ashourie, Mohammad Hossein Karimi-Jafarif, Mikko Karttunen,
Int. J. Mol. Sci. 24, 8161 (2023).
Web: https://doi.org/10.3390/ijms24098161
Preprint: https://doi.org/10.1101/2022.02.09.479729Structure and Dynamics of the Rett Syndrome Protein, MeCP2. Noriyuki Kodera, Anna A. Kalashnikova, Mary E. Porter-Goff, Catherine A. Musselman, Cecilia Chávez-García, Mikko Karttunen, Borries Demeler, Tatiana G. Kutateladze, Toshio Ando and Jeffrey C. Hansen, submitted
2022#
Machine Learning-Driven Process of Alumina Ceramics Laser Machining. Behbahani, Razyeh; Sarvestani, Hamidreza Yazdani; Fatehi, Erfan; Kiyani, Elham; Ashrafi, Behnam; Karttunen, Mikko; Rahmat, Meysam. Phys. Scr. 98, 015834, (2022).
Web: https://doi.org/10.1088/1402-4896/aca3da.
Get it at Research GateCollective Interactions among Organometallics Are Exotic Bonds Hidden on Lab Shelves. Sowlati-Hashjin, Shahin; Šadek, Vojtěch; Sadjadi, Seyedabdolreza; Karttunen, Mikko; Martín-Pendás, Angel; Foroutan-Nejad, Cina. Nat. Commun. 13, 2069, (2022).
Web: https://doi.org/10.1038/s41467-022-29504-0.
Featured in Chemistry WorldMachine-Learning-Based Data-Driven Discovery of Nonlinear Phase-Field Dynamics. Kiyani, Elham; Silber, Steven; Kooshkbaghi, Mahdi; Karttunen, Mikko. Phys. Rev. E 106, 065303, (2022).
Web: https://doi.org/10.1103/PhysRevE.106.065303.Structural Investigation of DHICA Eumelanin Using Density Functional Theory and Classical Molecular Dynamics Simulations. Soltani, Sepideh; Sowlati-Hashjin, Shahin; Tetsassi Feugmo, Conrard Giresse; Karttunen, Mikko. Molecules 27, 8417 (2022).
Web: https://doi.org/10.3390/molecules27238417.
Simulation parameters for melaninIn Silico Testing of the Universality of Epithelial Tissue Growth. Mazarei, Mahmood; Åström, Jan; Westerholm, Jan; Karttunen, Mikko. Phys. Rev. E 106, L062402, (2022).
Web: https://doi.org/10.1103/PhysRevE.106.L062402
Preprint: https://arxiv.org/abs/2203.15883
Github: CellSim3D: GPU Accelerated 3D Cell SimulatorTemperature-Resilient Anapole Modes Associated with TE Polarization in Semiconductor Nanowires. Thakore, Vaibhav; Ala-Nissila, Tapio; Karttunen, Mikko. Sci. Rep. 12, 21345, (2022).
Web: https://doi.org/10.1038/s41598-022-25289-w
Preprint: https://arxiv.org/abs/2203.14467AlphaFold2: A Role for Disordered Protein/Region Prediction?. Wilson, Carter J.; Choy, Wing-Yiu; Karttunen, Mikko. Int. J. Mol. Sci. 23, 4591, (2022).
Web: https://doi.org/10.3390/ijms23094591
Proteins, structures and data from the manuscript is available at GitHub: SoftSimu/AlphaFoldDisorderDataFullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Nisoh, Nililla; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Biomolecules 12, 639 (2022).
Web: https://doi.org/10.3390/biom12050639.SymPhas —general Purpose Software for Phase‐field, Phase‐field Crystal, and Reaction‐diffusion Simulations. Silber, Steven A.; Karttunen, Mikko. Adv. Theory Simul. 5, 2100351, (2022).
Web: https://doi.org/10.1002/adts.202100351
Preprint: http://arxiv.org/abs/2109.02598
GitHub respository for the open source codeStrengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Batishcheva, Elizaveta V.; Sokolova, Darya N.; Fedotova, Veronika S.; Sokolova, Maria P.; Nikolaeva, Alexandra L.; Vakulyuk, Alexey Y.; Shakhbazova, Christina Y.; Ribeiro, Mauro Carlos Costa; Karttunen, Mikko; Smirnov, Michael A. Polymers 14, 78 (2021).
Web: https://doi.org/10.3390/polym14010078.Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Tolmachev, Dmitry; Lukasheva, Natalia; Ramazanov, Ruslan; Nazarychev, Victor; Borzdun, Natalia; Volgin, Igor; Andreeva, Maria; Glova, Artyom; Melnikova, Sofia; Dobrovskiy, Alexey; Silber, Steven A.; Larin, Sergey; de Souza, Rafael Maglia; Ribeiro, Mauro Carlos Costa; Lyulin, Sergey; Karttunen, Mikko. Int. J. Mol. Sci. 23, 645 (2022).
https://doi.org/10.3390/ijms23020645.Highly Similar Sequence and Structure Yet Different Biophysical Behavior: A Computational Study of Two Triosephosphate Isomerases. Chávez-García, Cecilia; Karttunen, Mikko. J. Chem. Inf. Model. 62, 668–677, (2022).
https://doi.org/10.1021/acs.jcim.1c01501
Preprint: https://doi.org/10.1101/2021.10.13.464197Multiscale Computational Study of the Conformation of the Full-Length Intrinsically Disordered Protein MeCP2. Chávez-García, Cecilia; Hénin, Jérôme; Karttunen, Mikko. J. Chem. Inf. Model. 62, 958–970, (2022).
https://doi.org/10.1021/acs.jcim.1c01354.Free Energy and Stacking of Eumelanin Nanoaggregates. Soltani, Sepideh; Sowlati-Hashjin, Shahin; Tetsassi Feugmo, Conrard Giresse; Karttunen, Mikko. J. Phys. Chem. B 126, 1805–1818, (2022).
https://doi.org/10.1021/acs.jpcb.1c07884
Preprint: https://doi.org/10.1101/2021.08.31.458381Osmotic Method for Calculating Surface Pressure of Monolayers in Molecular Dynamics Simulations. de Souza, Rafael Maglia; Romeu, Fábio Cavalcante; Ribeiro, Mauro Carlos Costa; Karttunen, Mikko; Dias, Luís Gustavo. J. Chem. Theory Comput. 18, 2042-2046 (2022).
https://doi.org/10.1021/acs.jctc.2c00109.Changes in the Local Conformational States Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Seven Force Fields with and without NBFIX and ECC Corrections. Lukasheva, Natalia; Tolmachev, Dmitry; Martinez-Seara, Hector; Karttunen, Mikko. Polymers 14, 252, (2022).
https://doi.org/10.3390/polym14020252.Micromagnetic Simulations of Clusters of Nanoparticles with Internal Structure: Application to Magnetic Hyperthermia. Behbahani, Razyeh; Plumer, Martin L.; Saika-Voivod, Ivan. Phys. Rev. Appl. 18, 034034, (2022).
https://doi.org/10.1103/PhysRevApplied.18.034034.
2021#
Fine-Tuning the Polarizable CL&Pol Force Field for the Deep Eutectic Solvent Ethaline. Maglia de Souza, Rafael; Karttunen, Mikko; Ribeiro, Mauro Carlos Costa. J. Chem. Inf. Model. 61, 5938–5947, (2021).
https://doi.org/10.1021/acs.jcim.1c01181
Preprint: http://arxiv.org/abs/2109.14007Polymerizable Choline- and Imidazolium-Based Ionic Liquids Reinforced with Bacterial Cellulose for 3D-Printing. Smirnov, Michael A.; Fedotova, Veronika S.; Sokolova, Maria P.; Nikolaeva, Alexandra L.; Elokhovsky, Vladimir Yu; Karttunen, Mikko. Polymers 13, (2021).
https://doi.org/10.3390/polym13183044.Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations. Kitjanon, Jiramate; Khuntawee, Wasinee; Phongphanphanee, Saree; Sutthibutpong, Thana; Chattham, Nattaporn; Karttunen, Mikko; Wong-ekkabut, Jirasak. Polymers 13, 4044, (2021).
https://doi.org/10.3390/polym13224044.Role of Cholesterol Flip-Flop in Oxidized Lipid Bilayers. Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Biophys. J. (2021).
https://doi.org/10.1016/j.bpj.2021.08.036.Biphasic Proton Transport Mechanism for Uncoupling Proteins. Ardalan, Afshan; Sowlati-Hashjin, Shahin; Oduwoye, Habib; Uwumarenogie, Stephanie O.; Karttunen, Mikko; Smith, Matthew D.; Jelokhani-Niaraki, Masoud. J. Phys. Chem. B 125, 9130–9144, (2021).
https://doi.org/10.1021/acs.jpcb.1c04766.Electromagnetic Response of Nanoparticles with a Metallic Core and a Semiconductor Shell. Seyedheydari, Fahime; Conley, Kevin M.; Thakore, Vaibhav; Karttunen, Mikko; Sihvola, Ari; Ala-Nissila, Tapio. J. Phys. Commun. 5, 015002, (2021).
https://doi.org/10.1088/2399-6528/abd4c4.Silica-Silicon Composites for near-Infrared Reflection: A Comprehensive Computational and Experimental Study. Conley, Kevin; Moosakhani, Shima; Thakore, Vaibhav; Ge, Yanling; Lehtonen, Joonas; Karttunen, Mikko; Hannula, Simo-Pekka; Ala-Nissila, Tapio. Ceram. Int. 47, 16833–16840, (2021).
https://doi.org/10.1016/j.ceramint.2021.02.257
Preprint: https://arxiv.org/abs/2009.13805Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. Ardalan, Afshan; Sowlati-Hashjin, Shahin; Uwumarenogie, Stephanie O.; Fish, Michael; Mitchell, Joel; Karttunen, Mikko; Smith, Matthew D.; Jelokhani-Niaraki, Masoud. J. Phys. Chem. B 125, 169–183, (2021).
https://doi.org/10.1021/acs.jpcb.0c09422
Preprint: https://doi.org/10.1101/430835Jamming and Force Distribution in Growing Epithelial Tissue. Madhikar, Pranav; Åström, Jan; Baumeier, Björn; Karttunen, Mikko. Phys. Rev. Research 3, 023129, (2021).
https://doi.org/10.1103/PhysRevResearch.3.023129.Development of Coarse-Grained Force Field to Investigate Sodium-Ion Transport Mechanisms in Cyanoborate-Based Ionic Liquid. Maglia de Souza, Rafael; Lourenço, Tuanan C.; Amaral de Siqueira, Leonardo José; Karttunen, Mikko; Da Silva, Juarez L. F.; Dias, Luis Gustavo. J. Mol. Liq. 338, 116648, (2021).
https://doi.org/10.1016/j.molliq.2021.116648.Effects of Amino Acid Side-Chain Length and Chemical Structure on Anionic Polyglutamic and Polyaspartic Acid Cellulose-Based Polyelectrolyte Brushes. Tolmachev, Dmitry; Mamistvalov, George; Lukasheva, Natalia; Larin, Sergey; Karttunen, Mikko. Polymers 13, (2021).
https://doi.org/10.3390/polym13111789.KEAP1 Cancer Mutants: A Large-Scale Molecular Dynamics Study of Protein Stability. Wilson, Carter J.; Chang, Megan; Karttunen, Mikko; Choy, Wing-Yiu. Int. J. Mol. Sci. 22, (2021).
https://doi.org/10.3390/ijms22105408.Exploring the Conformational Landscape of the Neh4 and Neh5 Domains of Nrf2 Using Two Different Force Fields and Circular Dichroism. Chang, Megan; Wilson, Carter J.; Karunatilleke, Nadun Chanaka; Moselhy, Mohamed Hesham; Karttunen, Mikko; Choy, Wing-Yiu. J. Chem. Theory Comput. 17, 3145–3156, (2021).
https://doi.org/10.1021/acs.jctc.0c01243.In Silico and in Vitro Design of Cordycepin Encapsulation in Liposomes for Colon Cancer Treatment. Khuntawee, Wasinee; Amornloetwattana, Rawiporn; Vongsangnak, Wanwipa; Namdee, Katawut; Yata, Teerapong; Karttunen, Mikko; Wong-ekkabut, Jirasak. RSC Adv. 11, 8475–8484, (2021).
https://doi.org/10.1039/D1RA00038A.Experimental and Computational Observations of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association. Federizon, Jasmin; Feugmo, Conrard Giresse Tetsassi; Huang, Wei-Chiao; He, Xuedan; Miura, Kazutoyo; Razi, Aida; Ortega, Joaquin; Karttunen, Mikko; Lovell, Jonathan F. Pharmaceutics 13, 98, (2021).
https://doi.org/10.3390/pharmaceutics13010098.How to Control Interactions of Cellulose-Based Biomaterials with Skin: The Role of Acidity in the Contact Area. Gurtovenko, Andrey A.; Karttunen, Mikko. Soft Matter 17, 6507–6518, (2021).
https://doi.org/10.1039/d1sm00608h.Electrostatic Fields in Biophysical Chemistry. Sowlati-Hashjin, Shahin; Karttunen, Mikko; Matta, Chérif F. Chapter 7, pp. 225-262 in Electric Fields and Structure-Reactivity Aspects: Combined Theoretical and Experimental Perspectives, Sason Shaik and Thijs Stuyver (Eds.), RSC Publications, 2021.
Article: https://doi.org/10.1039/9781839163043-00225
Book: https://doi.org/10.1039/9781839163043
2020#
Self-Assembly of Phosphocholine Derivatives Using the ELBA Coarse-Grained Model: Micelles, Bicelles, and Reverse Micelles. de Souza, R. M.; Ratochinski, R. H.; Karttunen, Mikko; Dias, L. G. J. Chem. Inf. Model. 60, 522–536, (2020).
https://doi.org/10.1021/acs.jcim.9b00790.Formation of Aggregates, Icosahedral Structures and Percolation Clusters of Fullerenes in Lipids Bilayers: The Key Role of Lipid Saturation. Nisoh, Nililla; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Biochim. Biophys. Acta Biomembr. 1862, 183328, (2020).
https://doi.org/10.1016/j.bbamem.2020.183328
Preprint: https://doi.org/10.1101/2020.02.12.946152Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study. Sowlati-Hashjin, Shahin; Carbone, Paola; Karttunen, Mikko. J. Phys. Chem. B 124, 4487–4497, (2020).
https://doi.org/10.1021/acs.jpcb.0c02609
Preprint: https://doi.org/10.1101/2020.03.25.007732Cholesterol Sequestration by Xenon Nano Bubbles Leads to Lipid Raft Destabilization. Reyes-Figueroa, A. D.; Karttunen, Mikko; Ruiz-Suárez, J. C. Soft Matter 16, 9655–9661, (2020).
https://doi.org/10.1039/d0sm01256d
Preprint: https://doi.org/10.1101/2020.05.04.077727Molecular Dynamics Simulations of Polymer-Ionic Liquid (1-Ethyl-3-Methylimidazolium Tetracyanoborate) Ternary Electrolyte for Sodium and Potassium Ion Batteries. de Souza, Rafael Maglia; de Siqueira, Leonardo José Amaral; Karttunen, Mikko; Dias, Luis Gustavo. J. Chem. Inf. Model. 60, 485–499, (2020).
https://doi.org/10.1021/acs.jcim.9b00750.Grafted Dipolar Chains: Dipoles and Restricted Freedom Lead to Unexpected Hairpins. Glova, Artyom D.; Larin, Sergey V.; Nazarychev, Victor M.; Karttunen, Mikko; Lyulin, Sergey V. Macromolecules 53, 29–38, (2020).
https://doi.org/10.1021/acs.macromol.9b02288.Directing near-Infrared Photon Transport with Core@shell Particles. Conley, Kevin M.; Thakore, Vaibhav; Seyedheydari, Fahime; Karttunen, Mikko; Ala-Nissila, Tapio. AIP Adv. 10, 095128, (2020).
https://doi.org/10.1063/5.0015553.Influence of Calcium Binding on Conformations and Motions of Anionic Polyamino Acids. Effect of Side Chain Length. Tolmachev, Dmitry; Lukasheva, Natalia; Mamistvalov, George; Karttunen, Mikko. Polymers 12, 1279, (2020).
https://doi.org/10.3390/polym12061279.Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections. Tolmachev, D. A.; Boyko, O. S.; Lukasheva, N. V.; Martinez-Seara, H.; Karttunen, Mikko. J. Chem. Theory Comput. 16, 677–687, (2020).
https://doi.org/10.1021/acs.jctc.9b00813.Coarse-Grained Modeling of Cell Division in 3D: Influence of Density, Medium Viscosity, and Inter-Membrane Friction on Cell Growth and Nearest Neighbor Distribution. Madhikar, Pranav; Åström, Jan; Westerholm, Jan; Baumeier, Björn; Karttunen, Mikko. Soft Mater. 18, 150–162, (2020).
https://doi.org/10.1080/1539445X.2019.1706565.Symmetry-Breaking Transitions in the Early Steps of Protein Self-Assembly. La Rosa, Carmelo; Condorelli, Marcello; Compagnini, Giuseppe; Lolicato, Fabio; Milardi, Danilo; Do, Trang Nhu; Karttunen, Mikko; Pannuzzo, Martina; Ramamoorthy, Ayyalusamy; Fraternali, Franca; Collu, Francesca; Rezaei, Human; Strodel, Birgit; Raudino, Antonio. Eur. Biophys. J. 49, 175–191, (2020).
https://doi.org/10.1007/s00249-020-01424-1.Manipulation of Diatomic Molecules with Oriented External Electric Fields: Linear Correlations in Atomic Properties Lead to Nonlinear Molecular Responses. Sowlati-Hashjin, Shahin; Karttunen, Mikko; Matta, Chérif F. J. Phys. Chem. A 124, 4720–4731, (2020).
https://doi.org/10.1021/acs.jpca.0c02569.
2019#
Propulsion and Controlled Steering of Magnetic Nanohelices. Alcanzare, Maria Michiko; Karttunen, Mikko; Ala-Nissila, Tapio. Soft Matter 15, 1684–1691, (2019).
https://doi.org/10.1039/c8sm00037a.Molecular Dynamics Study of Natural Rubber-Fullerene Composites: Connecting Microscopic Properties to Macroscopic Behavior. Khuntawee, Wasinee; Sutthibutpong, Thana; Phongphanphanee, Saree; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Phys. Chem. Chem. Phys. 21, 19403–19413, (2019).
https://doi.org/10.1039/c9cp03155c.Thermoplasmonic Response of Semiconductor Nanoparticles: A Comparison with Metals. Thakore, Vaibhav; Tang, Janika; Conley, Kevin; Ala-Nissila, Tapio; Karttunen, Mikko. Adv. Theory Simul. 2, 1800100, (2019).
https://doi.org/10.1002/adts.201800100.Chemical Modification of Nanocrystalline Cellulose for Improved Interfacial Compatibility with Poly(lactic Acid). Averianov, Ilia V.; Stepanova, Mariia A.; Gofman, Iosif V.; Nikolaeva, Alexandra L.; Korzhikov-Vlakh, Viktor A.; Karttunen, Mikko; Korzhikova-Vlakh, Evgenia G. Mendeleev Commun. 29, 220–222, (2019).
https://doi.org/10.1016/j.mencom.2019.03.036.Controlled On-Off Switching of Tight-Binding Hydrogen Bonds between Model Cell Membranes and Acetylated Cellulose Surfaces. Gurtovenko, Andrey A.; Karttunen, Mikko. Langmuir 35, 13753–13760, (2019).
https://doi.org/10.1021/acs.langmuir.9b02453.Dependence of Fullerene Aggregation on Lipid Saturation due to a Balance between Entropy and Enthalpy. Nalakarn, Pornkamon; Boonnoy, Phansiri; Nisoh, Nililla; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Sci. Rep. 9, 1037, (2019).
https://doi.org/10.1038/s41598-018-37659-4.Membrane Disruption by Very Long Chain Fatty Acids during Necroptosis. Parisi, Laura R.; Sowlati-Hashjin, Shahin; Berhane, Ilyas A.; Galster, Samuel L.; Carter, Kevin A.; Lovell, Jonathan F.; Chemler, Sherry R.; Karttunen, Mikko; Atilla-Gokcumen, G. Ekin. ACS Chem. Biol. 14, 2286–2294, (2019).
https://doi.org/10.1021/acschembio.9b00616.PGlu-Modified Nanocrystalline Cellulose Improves Mechanical Properties, Biocompatibility, and Mineralization of Polyester-Based Composites. Stepanova, Mariia; Averianov, Ilia; Serdobintsev, Mikhail; Gofman, Iosif; Blum, Natalya; Semenova, Natalya; Nashchekina, Yuliya; Vinogradova, Tatiana; Korzhikov-Vlakh, Viktor; Karttunen, Mikko; Korzhikova-Vlakh, Evgenia. Materials 12, 3435, (2019).
https://doi.org/10.3390/ma12203435.The Extracellular Gate Shapes the Energy Profile of an ABC Exporter. Hutter, Cedric A. J.; Timachi, M. Hadi; Hürlimann, Lea M.; Zimmermann, Iwan; Egloff, Pascal; Göddeke, Hendrik; Kucher, Svetlana; Štefanić, Saša; Karttunen, Mikko; Schäfer, Lars V.; Bordignon, Enrica; Seeger, Markus A. Nat. Commun. 10, 2260, (2019).
https://doi.org/10.1038/s41467-019-09892-6.Quantifying Correlations between Mutational Sites in the Catalytic Subunit of γ-Secretase. Chávez-García, Cecilia; Aguayo-Ortiz, Rodrigo; Dominguez, Laura. J. Mol. Graph. Model. 88, 221–227, (2019).
https://doi.org/10.1016/j.jmgm.2019.02.002.Mineralization of Phosphorylated Cellulose: Crucial Role of Surface Structure and Monovalent Ions for Optimizing Calcium Content. Lukasheva, Natalia V.; Tolmachev, Dmitry A.; Karttunen, Mikko. Phys. Chem. Chem. Phys. 21, 1067–1077, (2019).
https://doi.org/10.1039/c8cp05767b.
2018#
Phospholipid-Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes. Gurtovenko, Andrey A.; Mukhamadiarov, Evgenii I.; Kostritskii, Andrei Yu; Karttunen, Mikko. J. Phys. Chem. B 122, 9973–9981, (2018).
https://doi.org/10.1021/acs.jpcb.8b07765.Improved General-Purpose Five-Point Model for Water: TIP5P/2018. Khalak, Yuriy; Baumeier, Björn; Karttunen, Mikko. J. Chem. Phys. 149, 224507, (2018).
https://doi.org/10.1063/1.5070137.Does α-Tocopherol Flip-Flop Help to Protect Membranes Against Oxidation?. Boonnoy, Phansiri; Karttunen, Mikko; Wong-Ekkabut, Jirasak. J. Phys. Chem. B 122, 10362–10370, (2018).
https://doi.org/10.1021/acs.jpcb.8b09064.CellSim3D: GPU Accelerated Software for Simulations of Cellular Growth and Division in Three Dimensions. Madhikar, Pranav; Åström, Jan; Westerholm, Jan; Karttunen, Mikko. Comput. Phys. Commun. 232, 206–213, (2018).
https://doi.org/10.1016/j.cpc.2018.05.024.Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides. Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A. J. Phys. Chem. B 122, 5851–5859, (2018).
https://doi.org/10.1021/acs.jpcb.8b03295.Lipopeptide Daptomycin: Interactions with Bacterial and Phospholipid Membranes, Stability of Membrane Aggregates and Micellation in Solution. Liu, Bin; Karttunen, Mikko. Biochim. Biophys. Acta Biomembr. 1860, 1949–1954, (2018).
https://doi.org/10.1016/j.bbamem.2018.03.028.Atomistic Mechanism of Large-Scale Conformational Transition in a Heterodimeric ABC Exporter. Göddeke, Hendrik; Timachi, M. Hadi; Hutter, Cedric A. J.; Galazzo, Laura; Seeger, Markus A.; Karttunen, Mikko; Bordignon, Enrica; Schäfer, Lars V. J. Am. Chem. Soc. 140, 4543–4551, (2018).
https://doi.org/10.1021/jacs.7b12944.Scale-Dependent Miscibility of Polylactide and Polyhydroxybutyrate: Molecular Dynamics Simulations. Glova, Artyom D.; Falkovich, Stanislav G.; Dmitrienko, Daniil I.; Lyulin, Alexey V.; Larin, Sergey V.; Nazarychev, Victor M.; Karttunen, Mikko; Lyulin, Sergey V. Macromolecules 51, 552–563, (2018).
https://doi.org/10.1021/acs.macromol.7b01640.
2017#
Controlled Propulsion and Separation of Helical Particles at the Nanoscale. Alcanzare, Maria Michiko T.; Thakore, Vaibhav; Ollila, Santtu T. T.; Karttunen, Mikko; Ala-Nissila, Tapio. Soft Matter 13, 2148–2154, (2017).
https://doi.org/10.1039/c6sm02437h.Molecular Dynamics Simulations and Kelvin Probe Force Microscopy to Study of Cholesterol-Induced Electrostatic Nanodomains in Complex Lipid Mixtures. Drolle, E.; Bennett, W. F. D.; Hammond, K.; Lyman, E.; Karttunen, M.; Leonenko, Z. Soft Matter 13, 355–362, (2017).
https://doi.org/10.1039/c6sm01350c.Alpha-Tocopherol Inhibits Pore Formation in Oxidized Bilayers. Boonnoy, Phansiri; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Phys. Chem. Chem. Phys. 19, 5699–5704, (2017).
https://doi.org/10.1039/c6cp08051k.Non-Conformal Coarse-Grained Potentials for Water. Rodríguez-López, Tonalli; Khalak, Yuriy; Karttunen, Mikko. J. Chem. Phys. 147, 134108, (2017).
https://doi.org/10.1063/1.4985914.Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green’s Functions Theory. Wehner, Jens; Baumeier, Björn. J. Chem. Theory Comput. 13, 1584–1594, (2017).
https://doi.org/10.1021/acs.jctc.6b00935.A Molecular Dynamics Study of Conformations of Beta-Cyclodextrin and Its Eight Derivatives in Four Different Solvents. Khuntawee, Wasinee; Karttunen, Mikko; Wong-Ekkabut, Jirasak. Phys. Chem. Chem. Phys. 19, 24219–24229, (2017).
https://doi.org/10.1039/c7cp04009a.Design of Hydrated Porphyrin-Phospholipid Bilayers with Enhanced Magnetic Resonance Contrast. Shao, Shuai; Do, Trang Nhu; Razi, Aida; Chitgupi, Upendra; Geng, Jumin; Alsop, Richard J.; Dzikovski, Boris G.; Rheinstädter, Maikel C.; Ortega, Joaquin; Karttunen, Mikko; Spernyak, Joseph A.; Lovell, Jonathan F. Small 13, 1602505, (2017).
https://doi.org/10.1002/smll.201602505.
2016#
Getting Excited: Challenges in Quantum-Classical Studies of Excitons in Polymeric Systems. Bagheri, Behnaz; Baumeier, Björn; Karttunen, Mikko. Phys. Chem. Chem. Phys. 18, 30297–30304, (2016).
https://doi.org/10.1039/c6cp02944b.Solvent Effects on Optical Excitations of Poly Para Phenylene Ethynylene Studied by QM/MM Simulations Based on Many-Body Green’s Functions Theory. Bagheri, B.; Karttunen, M.; Baumeier, B. Eur. Phys. J. Spec. Top. 225, 1743–1756, (2016).
https://doi.org/10.1140/epjst/e2016-60144-5.Molecular Dynamics Simulation of Water Permeation through the Alpha-Hemolysin Channel. Wong-Ekkabut, Jirasak; Karttunen, Mikko. J. Biol. Phys. 42, 133–146, (2016).
https://doi.org/10.1007/s10867-015-9396-x.The Good, the Bad and the User in Soft Matter Simulations. Wong-ekkabut, Jirasak; Karttunen, Mikko. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, 2529–2538, (2016).
https://doi.org/10.1016/j.bbamem.2016.02.004.Effect of Cholesterol on Cellular Uptake of Cancer Drugs Pirarubicin and Ellipticine. Zhang, Lei; Bennett, W. F. Drew; Zheng, Tao; Ouyang, Ping-Kai; Ouyang, Xinping; Qiu, Xueqing; Luo, Anqi; Karttunen, Mikko; Chen, P. J. Phys. Chem. B 120, 3148–3156, (2016).
https://doi.org/10.1021/acs.jpcb.5b12337.Ab Initio Calculations of Optical Properties of Silver Clusters: Cross-over from Molecular to Nanoscale Behavior. Titantah, John T.; Karttunen, Mikko. Eur. Phys. J. B 89, 125, (2016).
https://doi.org/10.1140/epjb/e2016-70065-y.Binding of Disordered Peptides to Kelch: Insights from Enhanced Sampling Simulations. Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko. J. Chem. Theory Comput. 12, 395–404, (2016).
https://doi.org/10.1021/acs.jctc.5b00868.Characterization of the Free State Ensemble of the CoRNR Box Motif by Molecular Dynamics Simulations. Cino, Elio A.; Choy, Wing-Yiu; Karttunen, Mikko. J. Phys. Chem. B 120, 1060–1068, (2016).
https://doi.org/10.1021/acs.jpcb.5b11565.
2015#
Folding and Insertion Thermodynamics of the Transmembrane WALP Peptide. Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko. J. Chem. Phys. 143, 243127, (2015).
https://doi.org/10.1063/1.4935487.Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides. Xiao, Y.; Karttunen, M.; Jalkanen, J.; Mussi, M. C. M.; Liao, Y.; Grohe, B.; Lagugné-Labarthet, F.; Siqueira, W. L. J. Dent. Res. 94, 1106–1112, (2015).
https://doi.org/10.1177/0022034515586769.Hydrophobicity: Effect of Density and Order on Water’s Rotational Slowing down. Titantah, John Tatini; Karttunen, Mikko. Soft Matter 11, 7977–7985, (2015).
https://doi.org/10.1039/c5sm00930h.Crossovers in Supercooled Solvation Water: Effects of Hydrophilic and Hydrophobic Interactions. Titantah, John Tatini; Karttunen, Mikko. EPL 110, 38006, (2015).
https://doi.org/10.1209/0295-5075/110/38006.Lipid Monolayer Disruption Caused by Aggregated Carbon Nanoparticles. Nisoh, Nililla; Karttunen, Mikko; Monticelli, Luca; Wong-ekkabut, Jirasak. RSC Adv. 5, 11676–11685, (2015).
https://doi.org/10.1039/C4RA17006G.Design and Characterization of a Multifunctional pH-Triggered Peptide C8 for Selective Anticancer Activity. Lu, Sheng; Bennett, W. F. Drew; Ding, Yong; Zhang, Lei; Fan, Helen Y.; Zhao, Danyang; Zheng, Tao; Ouyang, Ping-Kai; Li, Jason; Wu, Yan; Xu, Wen; Chu, Dafeng; Yuan, Yongfang; Heerklotz, Heiko; Karttunen, Mikko; Chen, P. Adv. Healthc. Mater. 4, 2709–2718, (2015).
https://doi.org/10.1002/adhm.201500636.Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids. Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak. J. Phys. Chem. Lett. 6, 4884–4888, (2015).
https://doi.org/10.1021/acs.jpclett.5b02405.Molecular dynamics simulation of surfactant monolayers, Bin Liu, Jirasak Wong-ekkabut, Mikko Karttunen, in “Computational Methods for Complex Liquid-Fluid Interfaces”, Rahni, Karbaschi, Miller (Eds.). Taylor & Francis (2015).
Article: Chapter 11
Book: https://doi.org/10.1201/b19337Molecular-scale computational techniques in interfacial science, Trang Nhu Do, Jari Jalkanen, Mikko Karttunen, in “Computational Methods for Complex Liquid-Fluid Interfaces”, Rahni, Karbaschi, Miller (Eds.). Taylor & Francis (2015).
Article: Chapter 6
Book: https://doi.org/10.1201/b19337
2014#
Molecular Dynamics Simulations of Lipid Membranes with Lateral Force: Rupture and Dynamic Properties. Xie, Jun Yu; Ding, Guang Hong; Karttunen, Mikko. Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, 994?1002, (2014).
https://doi.org/10.1016/j.bbamem.2013.12.011.In Situ Nanoparticle Size Measurements of Gas-Borne Silicon Nanoparticles by Time-Resolved Laser-Induced Incandescence. Sipkens, T. A.; Mansmann, R.; Daun, K. J.; Petermann, N.; Titantah, J. T.; Karttunen, M.; Wiggers, H.; Dreier, T.; Schulz, C. Appl. Phys. B 116, 623–636, (2014).
https://doi.org/10.1007/s00340-013-5745-2.Dehydroergosterol as an Analogue for Cholesterol: Why It Mimics Cholesterol so Well-or Does It?. Pourmousa, Mohsen; Róg, Tomasz; Mikkeli, Risto; Vattulainen, Llpo; Solanko, Lukasz M.; Wüstner, Daniel; List, Nanna Holmgaard; Kongsted, Jacob; Karttunen, Mikko. J. Phys. Chem. B 118, 7345–7357, (2014).
https://doi.org/10.1021/jp406883k.Porphyrin-Phospholipid Liposomes Permeabilized by near-Infrared Light. Carter, Kevin A.; Shao, Shuai; Hoopes, Matthew I.; Luo, Dandan; Ahsan, Bilal; Grigoryants, Vladimir M.; Song, Wentao; Huang, Haoyuan; Zhang, Guojian; Pandey, Ravindra K.; Geng, Jumin; Pfeifer, Blaine A.; Scholes, Charles P.; Ortega, Joaquin; Karttunen, Mikko; Lovell, Jonathan F. Nat. Commun. 5, 3546, (2014).
https://doi.org/10.1038/ncomms4546.Biopolymer Filtration in Corrugated Nanochannels. Ollila, Santtu T.; Denniston, Colin; Karttunen, Mikko; Ala-Nissila, Tapio. Phys. Rev. Lett. 112, 118301, (2014).
https://doi.org/10.1103/physrevlett.112.118301.Molecular Dynamics Study of DNA Oligomers under Angled Pulling. Naserian-Nik, A. M.; Tahani, M.; Karttunen, M. RSC Adv. 4, 10751, (2014).
https://doi.org/10.1039/c3ra45604h.A New Model for Cell Division and Migration with Spontaneous Topology Changes. Mkrtchyan, Anna; Åström, Jan; Karttunen, Mikko. Soft Matter 10, 4332–4339, (2014).
https://doi.org/10.1039/c4sm00489b.Modeling the Behavior of Confined Colloidal Particles under Shear Flow. Mackay, F. E.; Pastor, K.; Karttunen, M.; Denniston, C. Soft Matter 10, 8724–8730, (2014).
https://doi.org/10.1039/c4sm01812e.Molecular Dynamics Simulations of DPPC/CTAB Monolayers at the Air/Water Interface. Liu, Bin; Hoopes, Matthew I.; Karttunen, Mikko. J. Phys. Chem. B 118, 11723-11737, (2014).
https://doi.org/10.1021/jp5050892.Melatonin Directly Interacts with Cholesterol and Alleviates Cholesterol Effects in Dipalmitoylphosphatidylcholine Monolayers. Choi, Youngjik; Attwood, Simon J.; Hoopes, Matthew I.; Drolle, Elizabeth; Karttunen, Mikko; Leonenko, Zoya. Soft Matter 10, 206, (2014).
https://doi.org/10.1039/c3sm52064a.Micelle Fragmentation and Wetting in Confined Flow. Habibi, Mona; Denniston, Colin; Karttunen, Mikko. EPL 108, 28005, (2014).
https://doi.org/10.1209/0295-5075/108/28005.Accelerating the Conformational Sampling of Intrinsically Disordered Proteins. Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko. J. Chem. Theory Comput. 10, 5081–5094, (2014).
https://doi.org/10.1021/ct5004803.Classical Electrostatics for Biomolecular Simulations. Cisneros, G. Andrés; Karttunen, Mikko; Ren, Pengyu; Sagui, Celeste. Chem. Rev. 114, 779–814, (2014).
https://doi.org/10.1021/cr300461d.Long Molecular Dynamics Simulations of Intrinsically Disordered Proteins Reveal Preformed Structural Elements for Target Binding. Cino, Elio, A.; Karttunen, Mikko; Choy, Wing-Yiu. In Computational Approaches to Protein Dynamics - From Quantum to Coarse-Grained Methods (Taylor & Francis), M. Fuxreiter (Ed.).
Article: Chapter 8 Book: https://doi.org/10.1201/b17979
2013#
Hydrodynamic Forces Implemented into LAMMPS through a Lattice-Boltzmann Fluid. Mackay, F. E.; Ollila, S. T. T.; Denniston, C. Comput. Phys. Commun. 184, 2021–2031, (2013).
https://doi.org/10.1016/j.cpc.2013.03.024.Analytical Model and Multiscale Simulations of Aβ Peptide Aggregation in Lipid Membranes: Towards a Unifying Description of Conformational Transitions, Oligomerization and Membrane Damage. Pannuzzo, Martina; Milardi, Danilo; Raudino, Antonio; Karttunen, Mikko; Rosa, Carmelo La. Phys. Chem. Chem. Phys. 15, 8940–8951, (2013).
https://doi.org/10.1039/c3cp44539a.α-Helical Structures Drive Early Stages of Self-Assembly of Amyloidogenic Amyloid Polypeptide Aggregate Formation in Membranes. Pannuzzo, Martina; Raudino, Antonio; Milardi, Danilo; La Rosa, Carmelo; Karttunen, Mikko. Sci. Rep. 3, 2781, (2013).
https://doi.org/10.1038/srep02781.Multiphase Density Functional Theory Parameterization of the Interatomic Potential for Silver and Gold. Titantah, John T.; Karttunen, Mikko. Eur. Phys. J. B 86, (2013).
https://doi.org/10.1140/epjb/e2013-40067-6.Water Dynamics: Relation between Hydrogen Bond Bifurcations, Molecular Jumps, Local Density & Hydrophobicity. Titantah, John Tatini; Karttunen, Mikko. Sci. Rep. 3, 2991, (2013).
https://doi.org/10.1038/srep02991.Early Stages of Interactions of Cell-Penetrating Peptide Penetratin with a DPPC Bilayer. Pourmousa, Mohsen; Karttunen, Mikko. Chem. Phys. Lipids 169, 85–94, (2013).
https://doi.org/10.1016/j.chemphyslip.2013.02.011.Hydrodynamic Effects on Confined Polymers. Ollila, Santtu T. T.; Denniston, Colin; Karttunen, Mikko; Ala-Nissila, Tapio. Soft Matter 9, 3478–3487, (2013).
https://doi.org/10.1039/C3SM27410A.Pulling of Double-Stranded DNA by Atomic Force Microscopy: A Simulation in Atomistic Details. Naserian-Nik, A. M.; Tahani, M.; Karttunen, M. RSC Adv. 3, 10516, (2013).
https://doi.org/10.1039/c3ra23213a.Molecular Dynamics Study of Oxidized Lipid Bilayers in NaCl Solution. Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak. J. Phys. Chem. B 117, 8490–8501, (2013).
https://doi.org/10.1021/jp4040612.Phase-Field-Crystal Model for Magnetocrystalline Interactions in Isotropic Ferromagnetic Solids. Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko. Physical Review E 88, 032407, (2013).
https://doi.org/10.1103/PhysRevE.88.032407.Effect of Melatonin and Cholesterol on the Structure of DOPC and DPPC Membranes. Drolle, E.; Kučerka, N.; Hoopes, M. I.; Choi, Y.; Katsaras, J.; Karttunen, M.; Leonenko, Z. Biochim. Biophys. Acta 1828, 2247–2254, (2013).
https://doi.org/10.1016/j.bbamem.2013.05.015.Thermal Accommodation Coefficients for Laser-Induced Incandescence Sizing of Metal Nanoparticles in Monatomic Gases. Daun, K. J.; Sipkens, T. A.; Titantah, J. T.; Karttunen, M. Appl. Phys. B 112, 409–420, (2013).
https://doi.org/10.1007/s00340-013-5508-0.Conformational Biases of Linear Motifs. Cino, Elio A.; Choy, Wing-Yiu; Karttunen, Mikko. J. Phys. Chem. B 117, 15943–15957, (2013).
https://doi.org/10.1021/jp407536p.Binding of Disordered Proteins to a Protein Hub. Cino, Elio A.; Killoran, Ryan C.; Karttunen, Mikko; Choy, Wing-Yiu. Sci. Rep. 3, 2305, (2013).
https://doi.org/10.1038/srep02305.Classical Molecular Dynamics in a Nutshell. Hug, Susanna. Methods Mol. Biol. 924, 127–152, (2013). In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ
Article: https://doi.org/10.1007/978-1-62703-017-5_6 Book: https://doi.org/10.1007/978-1-62703-017-5Molecular Dynamic Studies of Transportan Interacting with a DPPC Lipid Bilayer. Pourmousa, Mohsen; Wong-ekkabut, Jirasak; Patra, Michael; Karttunen, Mikko. J. Phys. Chem. B 117, 230–241, (2013).
https://doi.org/10.1021/jp310255r.
2012#
Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Cino, Elio A.; Choy, Wing-Yiu; Karttunen, Mikko. J. Chem. Theory Comput. 8, 2725–2740, (2012).
https://doi.org/10.1021/ct300323g.Long-Time Correlations and Hydrophobe-Modified Hydrogen-Bonding Dynamics in Hydrophobic Hydration. Titantah, John Tatini; Karttunen, Mikko. J. Am. Chem. Soc. 134, 9362–9368, (2012).
https://doi.org/10.1021/ja301908a.Assessment of Common Simulation Protocols for Simulations of Nanopores, Membrane Proteins, and Channels. Wong-Ekkabut, Jirasak; Karttunen, Mikko. J. Chem. Theory Comput. 8, 2905–2911, (2012).
https://doi.org/10.1021/ct3001359.Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Hug, Susanna; Grohe, Bernd; Jalkanen, Jari; Chan, Brian; Galarreta, Betty; Vincent, Krista; Lagugné-Labarthet, François; Lajoie, Gilles; Goldberg, Harvey A.; Karttunen, Mikko; Hunter, Graeme K.Soft Matter 8, 1226–1233, (2012).
https://doi.org/10.1039/c1sm06232h.Molecular Dynamics, Crystallography and Mutagenesis Studies on the Substrate Gating Mechanism of Prolyl Oligopeptidase. Kaszuba, Karol; Róg, Tomasz; Danne, Reinis; Canning, Peter; Fülöp, Vilmos; Juhász, Tünde; Szeltner, Zoltán; Pierre, J. F. St; García-Horsman, Arturo; Männistö, Pekka T.; Karttunen, Mikko; Hokkanen, Jyrki; Bunker, Alex. Biochimie 94, 1398–1411, (2012).
https://doi.org/10.1016/j.biochi.2012.03.012.Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics. Zhao, Wei; Gurtovenko, Andrey A.; Vattulainen, Ilpo; Karttunen, Mikko. J. Phys. Chem. B 116, 269–276, (2012).
https://doi.org/10.1021/jp210619q.Molecular Dynamics Simulations of the Bacterial ABC Transporter SAV1866 in the Closed Form. St-Pierre, Jean-François; Bunker, Alex; Róg, Tomasz; Karttunen, Mikko; Mousseau, Normand. J. Phys. Chem. B 116, 2934–2942, (2012).
https://doi.org/10.1021/jp209126c.Combined Depletion and Electrostatic Forces in Polymer-Induced Membrane Adhesion: A Theoretical Model. Raudino, Antonio; Pannuzzo, Martina; Karttunen, Mikko. J. Chem. Phys. 136, 055101, (2012).
https://doi.org/10.1063/1.3678836.A Molecular Dynamics Implementation of the 3D Mercedes-Benz Water Model. Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T. Comput. Phys. Commun. 183, 363–369, (2012).
https://doi.org/10.1016/j.cpc.2011.09.008.Mimicking the Biomolecular Control of Calcium Oxalate Monohydrate Crystal Growth: Effect of Contiguous Glutamic Acids. Grohe, Bernd; Hug, Susanna; Langdon, Aaron; Jalkanen, Jari; Rogers, Kem A.; Goldberg, Harvey A.; Karttunen, Mikko; Hunter, Graeme K. Langmuir 28, 12182–12190, (2012).
https://doi.org/10.1021/la3018985.Molecular Dynamics Simulation of Thermal Accommodation Coefficients for Laser-Induced Incandescence Sizing of Nickel Particles. Daun, K. J.; Titantah, J. T.; Karttunen, M. Appl. Phys. B 107, 221–228, (2012).
https://doi.org/10.1007/s00340-012-4896-x.Effects of Molecular Crowding on the Dynamics of Intrinsically Disordered Proteins. Cino, Elio A.; Karttunen, Mikko; Choy, Wing-Yiu. PLoS One 7, e49876, (2012).
https://doi.org/10.1371/journal.pone.0049876.Stiffness Transition in Anisotropic Fiber Nets. Åström, J. A.; Kumar, P. B. Sunil; Karttunen, Mikko. Physical Review E 86, (2012).
https://doi.org/10.1103/PhysRevE.86.021922.
2011#
Fluctuating Lattice-Boltzmann Model for Complex Fluids. Ollila, Santtu T. T.; Denniston, Colin; Karttunen, Mikko; Ala-Nissila, Tapio. J. Chem. Phys. 134, 064902, (2011).
https://doi.org/10.1063/1.3544360.Use of Umbrella Sampling to Calculate the Entrance/Exit Pathway for Z-Pro-Prolinal Inhibitor in Prolyl Oligopeptidase. St-Pierre, Jean-François; Karttunen, Mikko; Mousseau, Normand; Róg, Tomasz; Bunker, Alex. J. Chem. Theory Comput. 7, 1583–1594, (2011).
https://doi.org/10.1021/ct1007058.Matrix Gla Protein Inhibits Ectopic Calcification by a Direct Interaction with Hydroxyapatite Crystals. O’Young, Jason; Liao, Yinyin; Xiao, Yizhi; Jalkanen, Jari; Lajoie, Gilles; Karttunen, Mikko; Goldberg, Harvey A.; Hunter, Graeme K. J. Am. Chem. Soc. 133, 18406–18412, (2011).
https://doi.org/10.1021/ja207628k.Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies. Stepniewski, Michał; Pasenkiewicz-Gierula, Marta; Róg, Tomasz; Danne, Reinis; Orlowski, Adam; Karttunen, Mikko; Urtti, Arto; Yliperttula, Marjo; Vuorimaa, Elina; Bunker, Alex. Langmuir 27, 7788–7798, (2011).
https://doi.org/10.1021/la200003n.Simulations of Micellization of Sodium Hexyl Sulfate. Sammalkorpi, M.; Sanders, S.; Panagiotopoulos, A. Z.; Karttunen, M.; Haataja, M. J. Phys. Chem. B 115, 1403–1410, (2011).
https://doi.org/10.1021/jp109882r.Low Density Lipoprotein: Structure, Dynamics, and Interactions of apoB-100 with Lipids. Murtola, Teemu; Vuorela, Timo A.; Hyvönen, Marja T.; Marrink, Siewert-Jan; Karttunen, Mikko; Vattulainen, Ilpo. Soft Matter 7, 8135–8141, (2011).
https://doi.org/10.1039/C1SM05367A.Hydrophobicity within the Three-Dimensional Mercedes-Benz Model: Potential of Mean Force. Dias, Cristiano L.; Hynninen, Teemu; Ala-Nissila, Tapio; Foster, Adam S.; Karttunen, Mikko. J. Chem. Phys. 134, 065106, (2011).
https://doi.org/10.1063/1.3537734.Hydrophobic Interactions in the Formation of Secondary Structures in Small Peptides. Dias, Cristiano L.; Karttunen, Mikko; Chan, Hue Sun. Physical Review E 84, (2011).
https://doi.org/10.1103/PhysRevE.84.041931.Microsecond Molecular Dynamics Simulations of Intrinsically Disordered Proteins Involved in the Oxidative Stress Response. Cino, Elio A.; Wong-ekkabut, Jirasak; Karttunen, Mikko; Choy, Wing-Yiu. PLoS One 6, e27371, (2011).
https://doi.org/10.1371/journal.pone.0027371.Citrate Modulates Calcium Oxalate Crystal Growth by Face-Specific Interactions. Grohe, Bernd; O’Young, Jason; Langdon, Aaron; Karttunen, Mikko; Goldberg, Harvey A.; Hunter, Graeme K. Cells Tissues Organs 194, 176–181, (2011).
https://doi.org/10.1159/000324338.
2010#
Reply to the Comment by Graziano on “The Hydrophobic Effect and Its Role in Cold Denaturation”. Dias, Cristiano L.; Ala-Nissila, Tapio; Wong-ekkabut, Jirasak; Vattulainen, Ilpo; Grant, Martin; Karttunen, Mikko. Cryobiology 60, 356–357, (2010).
https://doi.org/10.1016/j.cryobiol.2010.03.006.Roles of Electrostatics and Conformation in Protein-Crystal Interactions. Azzopardi, Paul V.; O’Young, Jason; Lajoie, Gilles; Karttunen, Mikko; Goldberg, Harvey A.; Hunter, Graeme K. PLoS One 5, e9330, (2010).
https://doi.org/10.1371/journal.pone.0009330.Role of Lipids in Spheroidal High Density Lipoproteins. Vuorela, Timo; Catte, Andrea; Niemelä, Perttu S.; Hall, Anette; Hyvönen, Marja T.; Marrink, Siewert-Jan; Karttunen, Mikko; Vattulainen, Ilpo. PLoS Comput. Biol. 6, e1000964, (2010).
https://doi.org/10.1371/journal.pcbi.1000964.Effects of the Lipid Bilayer Phase State on the Water Membrane Interface. Stepniewski, Michał; Bunker, Alex; Pasenkiewicz-Gierula, Marta; Karttunen, Mikko; Róg, Tomasz. J. Phys. Chem. B 114, 11784–11792, (2010).
https://doi.org/10.1021/jp104739a.Molecular Dynamics Simulations Reveal Fundamental Role of Water as Factor Determining Affinity of Binding of Beta-Blocker Nebivolol to beta(2)-Adrenergic Receptor. Kaszuba, Karol; Róg, Tomasz; Bryl, Krzysztof; Vattulainen, Ilpo; Karttunen, Mikko. J. Phys. Chem. B 114, 8374–8386, (2010).
https://doi.org/10.1021/jp909971f.Static Charges Cannot Drive a Continuous Flow of Water Molecules through a Carbon Nanotube. Wong-ekkabut, Jirasak; Miettinen, Markus S.; Dias, Cristiano; Karttunen, Mikko. Nat. Nanotechnol. 5, 555–557, (2010).
https://doi.org/10.1038/nnano.2010.152.Cholesterol Induces Specific Spatial and Orientational Order in Cholesterol/Phospholipid Membranes. Martinez-Seara, Hector; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo; Reigada, Ramon. PLoS One 5, e11162, (2010).
https://doi.org/10.1371/journal.pone.0011162.Cutting Ice: Nanowire Regelation. Hynninen, Teemu; Heinonen, Vili; Dias, Cristiano L.; Karttunen, Mikko; Foster, Adam S.; Ala-Nissila, Tapio. Phys. Rev. Lett. 105, (2010).
https://doi.org/10.1103/PhysRevLett.105.086102.The Flexible Polyelectrolyte Hypothesis of Protein-Biomineral Interaction. Hunter, Graeme K.; O’Young, Jason; Grohe, Bernd; Karttunen, Mikko; Goldberg, Harvey A. Langmuir 26, 18639–18646, (2010).
https://doi.org/10.1021/la100401r.Role of Glycolipids in Lipid Rafts: A View through Atomistic Molecular Dynamics Simulations with Galactosylceramide. Hall, Anette; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 114, 7797–7807, (2010).
https://doi.org/10.1021/jp912175d.The Hydrophobic Effect and Its Role in Cold Denaturation. Dias, Cristiano L.; Ala-Nissila, Tapio; Wong-ekkabut, Jirasak; Vattulainen, Ilpo; Grant, Martin; Karttunen, Mikko. Cryobiology 60, 91–99, (2010).
https://doi.org/10.1016/j.cryobiol.2009.07.005.Phosphorylation of Ser136 Is Critical for Potent Bone Sialoprotein-Mediated Nucleation of Hydroxyapatite Crystals. Baht, Gurpreet S.; O’Young, Jason; Borovina, Antonia; Chen, Hong; Tye, Coralee E.; Karttunen, Mikko; Lajoie, Gilles A.; Hunter, Graeme K.; Goldberg, Harvey A. Biochem. J 428, 385–395, (2010).
https://doi.org/10.1042/BJ20091864.Myosin Motor Mediated Contraction Is Enough to Produce Cytokinesis in the Absence of Polymerisation. Åström, Jan A.; von Alfthan, Sebastian; Kumar, P. B. Sunil; Karttunen, Mikko. Soft Matter 6, 5375, (2010).
https://doi.org/10.1039/c0sm00134a.
2009#
Lipid Domain Morphologies in Phosphatidylcholine-Ceramide Monolayers. Karttunen, Mikko; Haataja, Mikko P.; Säily, Matti; Vattulainen, Ilpo; Holopainen, Juha M. Langmuir 25, 4595–4600, (2009).
https://doi.org/10.1021/la803377s.Why Is the Sn-2 Chain of Monounsaturated Glycerophospholipids Usually Unsaturated Whereas the Sn-1 Chain Is Saturated? Studies of 1-Stearoyl-2-Oleoyl-Sn-Glycero-3-Phosphatidylcholine (SOPC) and 1-Oleoyl-2-Stearoyl-Sn-Glycero-3-Phosphatidylcholine (OSPC) Membranes with and without Cholesterol. Martinez-Seara, Hector; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo; Reigada, Ramon. J. Phys. Chem. B 113, 8347–8356, (2009).
https://doi.org/10.1021/jp902131b.Molecular Dynamics Study of Prolyl Oligopeptidase with Inhibitor in Binding Cavity. Kaszuba, K.; Rog, T.; St Pierre, J. F.; Mannisto, P. T.; Karttunen, M.; Bunker, A. SAR QSAR Environ. Res. 20, 595–609, (2009).
https://doi.org/10.1080/10629360903438198.Phosphorylation of Osteopontin Peptides Mediates Adsorption to and Incorporation into Calcium Oxalate Crystals. O’Young, Jason; Chirico, Sara; Tarhuni, Nehal Al; Grohe, Bernd; Karttunen, Mikko; Goldberg, Harvey A.; Hunter, Graeme K. Cells Tissues Organs 189, 51–55, (2009).
https://doi.org/10.1159/000151724.Mitochondrial Membranes with Mono- and Divalent Salt: Changes Induced by Salt Ions on Structure and Dynamics. Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 113, 15513–15521, (2009).
https://doi.org/10.1021/jp905915m.Role of Cardiolipins in the Inner Mitochondrial Membrane: Insight Gained through Atom-Scale Simulations. Róg, Tomasz; Martinez-Seara, Hector; Munck, Nana; Oresic, Matej; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 113, 3413–3422, (2009).
https://doi.org/10.1021/jp8077369.Water Isotope Effect on the Phosphatidylcholine Bilayer Properties: A Molecular Dynamics Simulation Study. Róg, Tomasz; Murzyn, Krzysztof; Milhaud, Jeannine; Karttunen, Mikko; Pasenkiewicz-Gierula, Marta. J. Phys. Chem. B 113, 2378–2387, (2009).
https://doi.org/10.1021/jp8048235.Multiscale Modeling of Emergent Materials: Biological and Soft Matter. Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo; Deserno, Markus; Karttunen, Mikko. Phys. Chem. Chem. Phys. 11, 1869–1892, (2009).
https://doi.org/10.1039/b818051b.Ionic Surfactant Aggregates in Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl(2)). Sammalkorpi, Maria; Karttunen, Mikko; Haataja, Mikko. J. Phys. Chem. B 113, 5863–5870, (2009).
https://doi.org/10.1021/jp901228v.Ordering Effects of Cholesterol and Its Analogues. Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo; Karttunen, Mikko. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, 97–121, (2009).
https://doi.org/10.1016/j.bbamem.2008.08.022.Systematic Coarse Graining from Structure Using Internal States: Application to Phospholipid/cholesterol Bilayer. Murtola, Teemu; Karttunen, Mikko; Vattulainen, Ilpo. J. Chem. Phys. 131, 055101, (2009).
https://doi.org/10.1063/1.3167405.Ion Dynamics in Cationic Lipid Bilayer Systems in Saline Solutions. Miettinen, Markus S.; Gurtovenko, Andrey A.; Vattulainen, Ilpo; Karttunen, Mikko. J. Phys. Chem. B 113, 9226–9234, (2009).
https://doi.org/10.1021/jp810233q.Three-Dimensional “Mercedes-Benz” Model for Water. Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko. J. Chem. Phys. 131, 054505, (2009).
https://doi.org/10.1063/1.3183935.Aster Formation and Rupture Transition in Semi-Flexible Fiber Networks with Mobile Cross-Linkers. Åström, Jan A.; Kumar, P. B. Sunil; Karttunen, Mikko. Soft Matter 5, 2869–2874, (2009).
https://doi.org/10.1039/b815892d.Nonlinear Driven Response of a Phase-Field Crystal in a Periodic Pinning Potential. Achim, C. V.; Ramos, J. A. P.; Karttunen, M.; Elder, K. R.; Granato, E.; Ala-Nissila, T.; Ying, S. C. Phys. Rev. E 79, 011606, (2009).
https://doi.org/10.1103/PhysRevE.79.011606.
2008#
Agent-Based Modelling of Glucose Transport. Van Gaalen, R. D.; Karttunen, Mikko. J. Comput. Interdiscip. Sci. 1, (2008).
https://doi.org/10.6062/jcis.2008.01.01.0004.Molecular Dynamics Simulations of the Enzyme Catechol-O-Methyltransferase: Methodological issues. Bunker, A.; Männistö, P. T.; Pierre, J. F. St; Róg, T.; Pomorski, P.; Stimson, L.; Karttunen, M. SAR QSAR Environ. Res. 19, 179–189, (2008).
https://doi.org/10.1080/10629360701843318.Significance of Cholesterol Methyl Groups. Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 112, 2922–2929, (2008).
https://doi.org/10.1021/jp7100495.Comparison of Cholesterol and Its Direct Precursors along the Biosynthetic Pathway: Effects of Cholesterol, Desmosterol and 7-Dehydrocholesterol on Saturated and Unsaturated Lipid Bilayers. Róg, Tomasz; Vattulainen, Ilpo; Jansen, Maurice; Ikonen, Elina; Karttunen, Mikko. J. Chem. Phys. 129, 154508, (2008).
https://doi.org/10.1063/1.2996296.Phase Diagram of Pinned Lattices in the Phase Field Crystal Model. Achim, C. V.; Karttunen, M.; Elder, K. R.; Granato, E.; Ala-Nissila, T.; Ying, S. C. J. Phys. Conf. Ser. 100, 072001, (2008).
https://doi.org/10.1088/1742-6596/100/7/072001.Structure of Spheroidal HDL Particles Revealed by Combined Atomistic and Coarse-Grained Simulations. Catte, Andrea; Patterson, James C.; Bashtovyy, Denys; Jones, Martin K.; Gu, Feifei; Li, Ling; Rampioni, Aldo; Sengupta, Durba; Vuorela, Timo; Niemelä, Perttu; Karttunen, Mikko; Marrink, Siewert Jan; Vattulainen, Ilpo; Segrest, Jere P. Biophys. J. 94, 2306–2319, (2008).
https://doi.org/10.1529/biophysj.107.115857.Interplay of Unsaturated Phospholipids and Cholesterol in Membranes: Effect of the Double-Bond Position. Martinez-Seara, Hector; Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo; Karttunen, Mikko; Reigada, Ramon. Biophys. J. 95, 3295–3305, (2008).
https://doi.org/10.1529/biophysj.108.138123.Influence of Ethanol on Lipid Membranes: From Lateral Pressure Profiles to Dynamics and Partitioning. Terama, Emma; Ollila, O. H. Samuli; Salonen, Emppu; Rowat, Amy C.; Trandum, Christa; Westh, Peter; Patra, Michael; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 112, 4131–4139, (2008).
https://doi.org/10.1021/jp0750811.Role of Phosphatidylglycerols in the Stability of Bacterial Membranes. Zhao, Wei; Róg, Tomasz; Gurtovenko, Andrey A.; Vattulainen, Ilpo; Karttunen, Mikko. Biochimie 90, 930–938, (2008).
https://doi.org/10.1016/j.biochi.2008.02.025.Micelle Fission through Surface Instability and Formation of an Interdigitating Stalk. Sammalkorpi, Maria; Karttunen, Mikko; Haataja, Mikko. J. Am. Chem. Soc. 130, 17977–17980, (2008).
https://doi.org/10.1021/ja8077413.Replacing the Cholesterol Hydroxyl Group with the Ketone Group Facilitates Sterol Flip-Flop and Promotes Membrane Fluidity. Róg, Tomasz; Stimson, Lorna M.; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo; Karttunen, Mikko. J. Phys. Chem. B 112, 1946–1952, (2008).
https://doi.org/10.1021/jp075078h.Nonpolar Interactions between Trans-Membrane Helical EGF Peptide and Phosphatidylcholines, Sphingomyelins and Cholesterol. Molecular Dynamics Simulation Studies. Róg, Tomasz; Murzyn, Krzysztof; Karttunen, Mikko; Pasenkiewicz-Gierula, Marta. J. Pept. Sci. 14, 374–382, (2008).
https://doi.org/10.1002/psc.936.Dynamical Scaling Exponents for Polymer Translocation through a Nanopore. Luo, Kaifu; Ollila, Santtu; Huopaniemi, Ilkka; Ala-Nissila, Tapio; Pomorski, Pawel; Karttunen, Mikko; Ying, See-Chen; Bhattacharya, Aniket. Physical Review E 78, (2008).
https://doi.org/10.1103/PhysRevE.78.050901.Electrostatics in Biomolecular Simulations: Where Are We Now and Where Are We Heading?. Karttunen, Mikko; Rottler, Jörg; Vattulainen, Ilpo; Sagui, Celeste. Curr. Top. Membr. 60, 49–89, (2008).
https://doi.org/10.1016/s1063-5823(08)00002-1.Lateral Diffusion in Lipid Membranes through Collective Flows. Falck, Emma; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo. J. Am. Chem. Soc. 130, 44–45, (2008).
https://doi.org/10.1021/ja7103558.Microscopic Mechanism for Cold Denaturation. Dias, Cristiano L.; Ala-Nissila, Tapio; Karttunen, Mikko; Vattulainen, Ilpo; Grant, Martin. Phys. Rev. Lett. 100, 118101, (2008).
https://doi.org/10.1103/PhysRevLett.100.118101.Strain Hardening, Avalanches, and Strain Softening in Dense Cross-Linked Actin Networks. Åström, Jan A.; Kumar, P. B. Sunil; Vattulainen, Ilpo; Karttunen, Mikko. Physical Review E 77, 051913, (2008).
https://doi.org/10.1103/PhysRevE.77.051913.Influence of Cis Double-Bond Parametrization on Lipid Membrane Properties: How Seemingly Insignificant Details in Force-Field Change Even Qualitative Trends. Martinez-Seara, Hector; Róg, Tomasz; Karttunen, Mikko; Reigada, Ramon; Vattulainen, Ilpo. J. Chem. Phys. 129, 105103, (2008).
https://doi.org/10.1063/1.2976443.Systematic Approach to Coarse-Graining of Molecular Descriptions and Interactions with Applications to Lipid Membranes. Murtola, Teemu; Vattulainen, Ilpo; Karttunen, Mikko. In Coarse-Graining of Condensed Phase and Biomolecular Systems. Gregory A. Voth (Ed.). CRC Press, Boca Raton, FL.
Article: Chapter 7
Book: https://doi.org/10.1201/9781420059564
Article at Research Gate
2007#
Assessing the Nature of Lipid Raft Membranes. Niemelä, Perttu S.; Ollila, Samuli; Hyvönen, Marja T.; Karttunen, Mikko; Vattulainen, Ilpo. PLoS Comput. Biol. 3, e34, (2007).
https://doi.org/10.1371/journal.pcbi.0030034.Long-Range Interactions and Parallel Scalability in Molecular Simulations. Patra, Michael; Hyvönen, Marja T.; Falck, Emma; Sabouri-Ghomi, Mohsen; Vattulainen, Ilpo; Karttunen, Mikko. Comput. Phys. Commun. 176, 14–22, (2007).
https://doi.org/10.1016/j.cpc.2006.07.017.Role of Sterol Type on Lateral Pressure Profiles of Lipid Membranes Affecting Membrane Protein Functionality: Comparison between Cholesterol, Desmosterol, 7-Dehydrocholesterol and Ketosterol. Ollila, O. H. Samuli; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo. J. Struct. Biol. 159, 311–323, (2007).
https://doi.org/10.1016/j.jsb.2007.01.012.Insight into the Putative Specific Interactions between Cholesterol, Sphingomyelin, and Palmitoyl-Oleoyl Phosphatidylcholine. Aittoniemi, Jussi; Niemelä, Perttu S.; Hyvönen, Marja T.; Karttunen, Mikko; Vattulainen, Ilpo. Biophys. J. 92, 1125–1137, (2007).
https://doi.org/10.1529/biophysj.106.088427.Enhanced Dielectrophoresis of Nanocolloids by Dimer Formation. Salonen, E.; Terama, E.; Vattulainen, I.; Karttunen, M. Europhys. Lett. 78, 48004+, (2007).
https://doi.org/10.1209/0295-5075/78/48004.Atomic-Scale Structure and Electrostatics of Anionic Palmitoyloleoylphosphatidylglycerol Lipid Bilayers with Na+ Counterions. Zhao, Wei; Róg, Tomasz; Gurtovenko, Andrey A.; Vattulainen, Ilpo; Karttunen, Mikko. Biophys. J. 92, 1114–1124, (2007).
https://doi.org/10.1529/biophysj.106.086272.Stearic Acid Spin Labels in Lipid Bilayers: Insight through Atomistic Simulations. Stimson, Lorna; Dong, Lei; Karttunen, Mikko; Wisniewska, Anna; Dutka, Małgorzata; Róg, Tomasz. J. Phys. Chem. B 111, 12447–12453, (2007).
https://doi.org/10.1021/jp0746796.Structural Properties of Ionic Detergent Aggregates: A Large-Scale Molecular Dynamics Study of Sodium Dodecyl Sulfate. Sammalkorpi, Maria; Karttunen, Mikko; Haataja, Mikko. J. Phys. Chem. B 111, 11722–11733, (2007).
https://doi.org/10.1021/jp072587a.What Happens If Cholesterol Is Made Smoother: Importance of Methyl Substituents in Cholesterol Ring Structure on Phosphatidylcholine-Sterol Interaction. Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo; Karttunen, Mikko. Biophys. J. 92, 3346–3357, (2007).
https://doi.org/10.1529/biophysj.106.095497.Glycolipid Membranes through Atomistic Simulations: Effect of Glucose and Galactose Head Groups on Lipid Bilayer Properties. Róg, Tomasz; Vattulainen, Ilpo; Bunker, Alex; Karttunen, Mikko. J. Phys. Chem. B 111, 10146–10154, (2007).
https://doi.org/10.1021/jp0730895.Reptational Dynamics in Dissipative Particle Dynamics Simulations of Polymer Melts. Nikunen, Petri; Vattulainen, Ilpo; Karttunen, Mikko. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 036713, (2007).
https://doi.org/10.1103/PhysRevE.75.036713.Effect of Double Bond Position on Lipid Bilayer Properties: Insight through Atomistic Simulations. Martinez-Seara, Hector; Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo; Karttunen, Mikko; Reigada, Ramon. J. Phys. Chem. B 111, 11162–11168, (2007).
https://doi.org/10.1021/jp071894d.Control of Calcium Oxalate Crystal Growth by Face-Specific Adsorption of an Osteopontin Phosphopeptide. Grohe, Bernd; O’Young, Jason; Ionescu, D. Andrei; Lajoie, Gilles; Rogers, Kem A.; Karttunen, Mikko; Goldberg, Harvey A.; Hunter, Graeme K. J. Am. Chem. Soc. 129, 14946–14951, (2007).
https://doi.org/10.1021/ja0745613.Coarse-Grained Model for Phospholipid/cholesterol Bilayer Employing Inverse Monte Carlo with Thermodynamic Constraints. Murtola, Teemu; Falck, Emma; Karttunen, Mikko; Vattulainen, Ilpo. J. Chem. Phys. 126, 075101, (2007).
https://doi.org/10.1063/1.2646614.
2006#
Dynamics of Water at Membrane Surfaces: Effect of Headgroup Structure. Murzyn, Krzysztof; Zhao, Wei; Karttunen, Mikko; Kurdziel, Marcin; Róg, Tomasz. Biointerphases 1, 98–105, (2006).
https://doi.org/10.1116/1.2354573.Significance of Sterol Structural Specificity. Desmosterol Cannot Replace Cholesterol in Lipid Rafts. Vainio, Saara; Jansen, Maurice; Koivusalo, Mirkka; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo; Ikonen, Elina. J. Biol. Chem. 281, 348–355, (2006).
https://doi.org/10.1074/jbc.M509530200.Influence of Pyrene-Labeling on Fluid Lipid Membranes. Repáková, Jarmila; Holopainen, Juha M.; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 110, 15403–15410, (2006).
https://doi.org/10.1021/jp061300r.Stencils with Isotropic Discretization Error for Differential Operators. Patra, Michael; Karttunen, Mikko. Numer. Methods Partial Differ. Equ. 22, 936–953, (2006).
https://doi.org/10.1002/num.20129.Transient Ordered Domains in Single-Component Phospholipid Bilayers. Murtola, Teemu; Róg, Tomasz; Falck, Emma; Karttunen, Mikko; Vattulainen, Ilpo. Phys. Rev. Lett. 97, (2006).
https://doi.org/10.1103/PhysRevLett.97.238102.Molecular Dynamics Study of Charged Dendrimers in Salt-Free Solution: Effect of Counterions. Gurtovenko, Andrey A.; Lyulin, Sergey V.; Karttunen, Mikko; Vattulainen, Ilpo. J. Chem. Phys. 124, 094904, (2006).
https://doi.org/10.1063/1.2166396.Interaction of Fusidic Acid with Lipid Membranes: Implications to the Mechanism of Antibiotic Activity. Falck, Emma; Hautala, Jari T.; Karttunen, Mikko; Kinnunen, Paavo K. J.; Patra, Michael; Saaren-Seppälä, Heikki; Vattulainen, Ilpo; Wiedmer, Susanne K.; Holopainen, Juha M. Biophys. J. 91, 1787–1799, (2006).
https://doi.org/10.1529/biophysj.106.084525.Under the Influence of Alcohol: The Effect of Ethanol and Methanol on Lipid Bilayers. Patra, Michael; Salonen, Emppu; Terama, Emma; Vattulainen, Ilpo; Faller, Roland; Lee, Bryan W.; Holopainen, Juha; Karttunen, Mikko. Biophys. J. 90, 1121–1135, (2006).
https://doi.org/10.1529/biophysj.105.062364.Tilt: Major Factor in Sterols’ Ordering Capability in Membranes. Aittoniemi, Jussi; Róg, Tomasz; Niemelä, Perttu; Pasenkiewicz-Gierula, Marta; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 110, 25562–25564, (2006).
https://doi.org/10.1021/jp064931u.Phase Diagram and Commensurate-Incommensurate Transitions in the Phase Field Crystal Model with an External Pinning Potential. Achim, C.; Karttunen, M.; Elder, K.; Granato, E.; Ala-Nissila, T.; Ying, S. Physical Review E 74, 072001, (2006).
https://doi.org/10.1103/PhysRevE.74.021104.Cell Aggregation: Packing Soft Grains. Åström, J. A.; Karttunen, M. Physical Review E 73, 062301, (2006).
https://doi.org/10.1103/PhysRevE.73.062301.The Influence of Lateral and Terminal Substitution on the Structure of a Liquid Crystal Dendrimer in Nematic Solution: A Computer Simulation Study. Wilson, Mark R.; Stimson, Lorna M.; Ilnytskyi, Jaroslav M. Liq. Cryst. 33, 1167–1175, (2006).
https://doi.org/10.1080/02678290600973113.Cholesterol-Sphingomyelin Interactions: A Molecular Dynamics Simulation Study. Róg, Tomasz; Pasenkiewicz-Gierula, Marta. Biophys. J. 91, 3756–3767, (2006).
https://doi.org/10.1529/biophysj.106.080887.Cholesterol Effects on a Mixed-Chain Phosphatidylcholine Bilayer: A Molecular Dynamics Simulation Study. Róg, T.; Pasenkiewicz-Gierula, M. Biochimie 88, 449–460, (2006).
https://doi.org/10.1016/j.biochi.2005.10.005.Influence of the Disulfide Bond Configuration on the Dynamics of the Spin Label Attached to Cytochrome c. Murzyn, Krzysztof; Róg, Tomasz; Blicharski, Wojciech; Dutka, Małgorzata; Pyka, Janusz; Szytula, Sebastian; Froncisz, Wojciech. Proteins 62, 1088–1100, (2006).
https://doi.org/10.1002/prot.20838.Effective Ac Response of Graded Colloidal Suspensions. Wei, En-Bo; Dong, L.; Yu, K. W. J. Appl. Phys. 99, 054101, (2006).
https://doi.org/10.1063/1.2177378.Giant Enhancement of Optical Nonlinearity in Multilayer Metallic Films. Huang, J. P.; Dong, L.; Yu, K. W. J. Appl. Phys. 99, 053503, (2006).
https://doi.org/10.1063/1.2175477.
2005#
Effect of Monovalent Salt on Cationic Lipid Membranes As Revealed by Molecular Dynamics Simulations. Gurtovenko, Andrey A.; Miettinen, Markus; Karttunen, Mikko; Vattulainen, Ilpo. J. Phys. Chem. B 109, 21126–21134, (2005).
https://doi.org/10.1021/jp053667m.Modelling Glycolipids: Take One,. Róg, Tomasz; Vattulainen, Ilpo; Karttunen, Mikko. Cellular and Molecular Biololgy Letters 10, 625–630, (2005).
Reply to ``Comment on the Use of the Method of Images for Calculating Electromagnetic Responses of Interacting Spheres’’. Huang, J. P.; Yu, K. W.; Gu, G. Q.; Karttunen, M.; Dong, L. Phys. Rev. E 72, 023402, (2005).
https://doi.org/10.1103/PhysRevE.72.023402.Dielectrophoresis of Nanocolloids: A Molecular Dynamics Study. Salonen, E.; Terama, E.; Vattulainen, I.; Karttunen, M. Eur. Phys. J. E 18, 133–142, (2005).
https://doi.org/10.1140/epje/i2004-10157-2.Response to Comment by Almeida et Al.: Free Area Theories for Lipid Bilayers–Predictive or Not?. Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo. Biophys. J. 89, 745–752, (2005).
https://doi.org/10.1529/biophysj.105.065714.Spectral Representation of the Effective Dielectric Constant of Graded Composites. Dong, L.; Karttunen, Mikko; Yu, K. W. Phys. Rev. E 72, 016613, (2005).
https://doi.org/10.1103/PhysRevE.72.016613.Exploring the Effect of Xenon on Biomembranes. Stimson, Lorna M.; Vattulainen, Ilpo; Róg, Tomasz; Karttunen, Mikko. Cell. Mol. Biol. Lett. 10, 563–569, (2005).
Coarse-Grained Simulation Studies of a Liquid Crystal Dendrimer: Towards Computational Predictions of Nanoscale Structure through Microphase Separation. Hughes, Zak E.; Wilson, Mark R.; Stimson, Lorna M. Soft Matter 1, 436–443, (2005).
https://doi.org/10.1039/b511082c.Multipole Polarizability of a Graded Spherical Particle. Dong, L.; Huang, J. P.; Yu, K. W.; Gu, G. Q. The European Physical Journal B 48, 439–444, (2005).
https://doi.org/10.1140/epjb/e2005-00419-5.Free Volume Properties of Sphingomyelin, DMPC, DPPC, and PLPC Bilayers. Kupiainen, Mikko; Falck, Emma; Ollila, Samuli; Niemelä, Perttu; Gurtovenko, Andrey A.; Hyvönen, Marja T.; Karttunen, Mikko; Vattulainen, Ilpo. Journal of Computational and Theoretical Nanoscience 2, 401-413 (2005).
Article
2004#
Turing Systems as Models of Complex Pattern Formation. Leppänen, Teemu; Karttunen, Mikko; Barrio, R. A.; Kaski, Kimmo. Braz. J. Phys. 34, (2004).
https://doi.org/10.1590/s0103-97332004000300006.Cationic DMPC/DMTAP Lipid Bilayers: Molecular Dynamics Study. Gurtovenko, Andrey A.; Patra, Michael; Karttunen, Mikko; Vattulainen, Ilpo. Biophys. J. 86, 3461–3472, (2004).
https://doi.org/10.1529/biophysj.103.038760.Electrokinetic Behavior of Two Touching Inhomogeneous Biological Cells and Colloidal Particles: Effects of Multipolar Interactions. Huang, J. P.; Karttunen, Mikko; Yu, K. W.; Dong, L.; Gu, G. Q. Phys. Rev. E 69, 051402, (2004).
https://doi.org/10.1103/PhysRevE.69.051402.Morphological Transitions and Bistability in Turing Systems. Leppänen, Teemu; Karttunen, Mikko; Barrio, R. A.; Kaski, Kimmo. Phys. Rev. E 70, 066202, (2004).
https://doi.org/10.1103/physreve.70.066202.Coarse-Grained Model for Phospholipid/cholesterol Bilayer Employing Inverse Monte Carlo with Thermodynamic Constraints. Murtola, Teemu; Falck, Emma; Karttunen, Mikko; Vattulainen, Ilpo. J. Chem. Phys. 121, 9156–9165, (2004).
https://doi.org/10.1063/1.1803537.Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations. Lee, Bryan W.; Faller, Roland; Sum, Amadeu K.; Vattulainen, Ilpo; Patra, Michael; Karttunen, Mikko. Fluid Phase Equilib. 225, 63–68, (2004).
https://doi.org/10.1016/j.fluid.2004.07.008.Systematic Comparison of Force Fields for Microscopic Simulations of NaCl in Aqueous Solutions: Diffusion, Free Energy of Hydration, and Structural Properties. Patra, Michael; Karttunen, Mikko. J. Comput. Chem. 25, 678–689, (2004).
https://doi.org/10.1002/jcc.10417.Lipid Bilayers Driven to a Wrong Lane in Molecular Dynamics Simulations by Subtle Changes in Long-Range Electrostatic Interactions. Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Falck, Emma; Vattulainen, Ilpo. J. Phys. Chem. B 108, 4485–4494, (2004).
https://doi.org/10.1021/jp031281a.Anomalously Slow Phase Transitions in Self-Gravitating Systems. Ispolatov, I.; Karttunen, M. Physical Review E 70, (2004).
https://doi.org/10.1103/PhysRevE.70.026102.Nonlinear Alternating Current Responses of Dipolar Fluids. Huang, J.; Yu, K.; Karttunen, Mikko. Physical Review E 70, (2004).
https://doi.org/10.1103/PhysRevE.70.011403.Lessons of Slicing Membranes: Interplay of Packing, Free Area, and Lateral Diffusion in Phospholipid/cholesterol Bilayers. Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo. Biophys. J. 87, 1076–1091, (2004).
https://doi.org/10.1529/biophysj.104.041368.Impact of Cholesterol on Voids in Phospholipid Membranes. Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo. J. Chem. Phys. 121, 12676, (2004).
https://doi.org/10.1063/1.1824033.Crumpling of a Stiff Tethered Membrane. Åström, J. A.; Timonen, J.; Karttunen, Mikko. Phys. Rev. Lett. 93, (2004).
https://doi.org/10.1103/PhysRevLett.93.244301.Many-Body Dipole-Induced Dipole Model for Electrorheological Fluids. Ji-Ping, Huang; Kin-Wah, Yu. Chinese Phys. 13, 1065, (2004).
https://doi.org/10.1088/1009-1963/13/7/017.Spatio-Temporal Dynamics in a Turing Model. Leppänen, T.; Karttunen, M.; Barrio, R. A.; Kaski, K. Unifying Themes in Complex Systems. 2011, pp 215–222.
https://doi.org/10.1007/978-3-642-17635-7_26.Optical Nonlinearity Enhancement of Graded Metal-Dielectric Composite Films. Huang, J. P.; Dong, L.; Yu, K. W. EPL 67, 854–858, (2004).
https://doi.org/10.1209/epl/i2004-10107-8.The Theory of Turing Pattern Formation. Leppänen, Teemu. Current Topics in Physics 199–227 (2005).
https://doi.org/10.1142/9781860947209_0011.Dielectric Response of Graded Spherical Particles of Anisotropic Materials. Dong, L.; Huang, J. P.; Yu, K. W.; Gu, G. Q. J. Appl. Phys. 95, 621–624, (2004).
https://doi.org/10.1063/1.1633648.Modeling of biologically motivated soft matter systems. Vattulainen Ilpo; Karttunen, Mikko. Handbook of Theoretical and Computational Nanotechnology, edited by M. Rieth and W. Schommers (American Scientific Publishers).
Article
2003#
The Effect of Noise on Turing Patterns. Leppänen, T.; Karttunen, M.; Barrio, R. A.; Kaski, K. Progr. Theoret. Phys. 150, 367–370, (2003).
https://doi.org/10.1143/PTPS.150.367.Dimensionality Effects in Turing Pattern Formation. Leppänen, Teemu; Karttunen, Mikko; Kaski, Kimmo; Barrio, Rafael A. Int. J. Mod. Phys. B 17, 5541–5553, (2003).
https://doi.org/10.1142/S0217979203023240.Dielectrophoresis of Charged Colloidal Suspensions. Huang, J. P.; Karttunen, Mikko; Yu, K. W.; Dong, L. Phys. Rev. E 67, 021403, (2003).
https://doi.org/10.1103/PhysRevE.67.021403.Characterization of Sphingosine−Phosphatidylcholine Monolayers: Effects of DNA. Säily, V. Matti J.; Alakoskela, Juha-Matti; Ryhänen, Samppa J.; Karttunen, Mikko; Kinnunen, Paavo K. J. Langmuir 19, 8956–8963, (2003).
https://doi.org/10.1021/la034307y.Stability of Charge Inversion, Thomson Problem, and Application to Electrophoresis. Patra, Michael; Patriarca, Marco; Karttunen, Mikko. Phys. Rev. 67, 031402, (2003).
https://doi.org/10.1103/PhysRevE.67.031402.Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts due to Truncating Electrostatic Interactions. Patra, M.; Karttunen, M.; Hyvönen, M. T.; Falck, E.; Lindqvist, P.; Vattulainen, I. Biophys. J. 84, 3636–3645, (2003).
https://doi.org/10.1016/S0006-3495(03)75094-2.How Would You Integrate the Equations of Motion in Dissipative Particle Dynamics Simulations?. Nikunen, P.; Karttunen, M.; Vattulainen, I. Comput. Phys. Commun. 153, 407–423, (2003).
https://doi.org/10.1016/S0010-4655(03)00202-9.Collapses and Explosions in Self-Gravitating Systems. Ispolatov, I.; Karttunen, M. Phys. Rev. E 68, 036117, (2003).
https://doi.org/10.1103/PhysRevE.68.036117.Electrorotation in Graded Colloidal Suspensions. Huang, J. P.; Yu, K. W.; Gu, G. Q.; Karttunen, Mikko. Phys. Rev. E 67, 051405, (2003).
https://doi.org/10.1103/PhysRevE.67.051405.Decay Rate Distributions of Disordered Slabs and Application to Random Lasers. Patra, M. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 016603, (2003).
https://doi.org/10.1103/PhysRevE.67.016603.
2002#
Instabilities and Resistance Fluctuations in Thin Accelerated Superconducting Rings. Karttunen, Mikko; Elder, K. R.; Tarlie, Martin B.; Grant, Martin. Phys. Rev. E 66, 026115, (2002).
https://doi.org/10.1103/PhysRevE.66.026115.Integration Schemes for Dissipative Particle Dynamics Simulations: From Softly Interacting Systems towards Hybrid Models. Vattulainen, I.; Karttunen, M.; Besold, G.; Polson, J. M. J. Chem. Phys. 116, 3967–3979, (2002).
https://doi.org/10.1063/1.1450554.A New Dimension to Turing Patterns. Leppänen, Teemu; Karttunen, M.; Kaski, Kimmo; Barrio, Rafael A.; Zhang, Limei. Physica D 168-169, 35–44, (2002).
https://doi.org/10.1016/S0167-2789(02)00493-1.On Coarse-Graining by the Inverse Monte Carlo Method: Dissipative Particle Dynamics Simulations Made to a Precise Tool in Soft Matter Modeling. Lyubartsev, Alexander P.; Karttunen, Mikko; Vattulainen, Ilpo; Laaksonen, Aatto. Soft Mater. 1, 121–137, (2002).
https://doi.org/10.1081/SMTS-120016746.Effects of Quenched Impurities on Surface Diffusion, Spreading, and Ordering of O/W(110). Nikunen, P.; Vattulainen, I.; Ala-Nissila, T. J. Chem. Phys. 117, 6757–6765, (2002).
https://doi.org/10.1063/1.1505856.
Older papers#
Towards Better Integrators for Dissipative Particle Dynamics Simulations. 1. Besold, G.; Vattulainen, I., I.; Karttunen, M.; Polson, J. M. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, R7611–R7614, (2000).
https://doi.org/10.1103/physreve.62.r7611.Defects, Order, and Hysteresis in Driven Charge-Density Waves. Karttunen, Mikko; Haataja, Mikko; Elder, K. R.; Grant, Martin. Phys. Rev. Lett. 83, 3518–3521, (1999).
https://doi.org/10.1103/PhysRevLett.83.3518.Nucleation, Growth, and Scaling in Slow Combustion. Karttunen, Mikko; Provatas, Nikolas; Ala-Nissila, Tapio; Grant, Martin. J. Stat. Phys. 90, 1401–1411, (1998).
https://doi.org/10.1023/A:1023243831128.The Internet Pilot to Physics: An Open Information System for Physics Research and Education. Karttunen, Mikko; Holmlund, Kenneth; Nowotny, Günther. Int. J. Mod. Phys. C 8, 3–17, (1997).
https://doi.org/10.1142/S0129183197000035.Residual Stresses in Plastic Random Systems. Alava, M. J.; Karttunen, M. E. J.; Niskanen, K. J. EPL 32, 143, (1995).
https://doi.org/10.1209/0295-5075/32/2/009.Fracture in Mesoscopic Disordered Systems. Karttunen, M. E.; Niskanen, K. J.; Kaski, K.Phys. Rev. B Condens. Matter 49, 9453–9459, (1994).
https://doi.org/10.1103/physrevb.49.9453.Molecular Dynamics of a Microscopic Droplet on Solid Surface. Nieminen, J. A.; Abraham, D. B.; Karttunen, M.; Kaski, K. Phys. Rev. Lett. 69, 124–127, (1992).
https://doi.org/10.1103/PhysRevLett.69.124.